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I. INTRODUCTION 

It has been suggested by Belavin et al. 
1 

and more recently by 

Wilczek’ that one may construct pseudo-particle --or instanton3-- 

solutions of the gauge field equations in the group G by embedding the 

group SU(2) in G. Due to the fact that there exist inequivalent imbedd- 

ings of SU(2) in SU(N) (N>2), Wilczek was able to draw some conclu- 

sions about the 4-particle interactions from pseudo-particle solutions 

in SU(3), and to construct solutions of winding number q> 1 in SU(N). 

An embedding of SU(2) in SU(N), for example, is completely 

defined by a set of N numbers known as the defining vector of the 

embedding, and can be graphically represented by a diagram known as 

the Dynkin characteristic4. Half the square of the length of the defining 

vector is called the index of the embedding. In most cases, the know- 

ledge of the index is sufficient to specify completely the embedding. 

However, it may happen that inequivalent embeddings admit the same 

index: in this case reference should be made to the corresponding 

Dynkin characteristics. 

We show that the charge -- or Pontryagin index -- is a multiple 

of the index of a particular embedding of SU(2) in G. We illustrate 

our classification by performing explicitly the classification of the 

embeddings for some simple algebras G (SU(N), for N= 3,4,5,6,7,8 and 

the exceptional algebra E7). 
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The gauge transformation properties of the solutions are com- 

pletely determined by the Dynkin characteristic: this allows us to 

assign relevant quantum numbers for the various solutions obtained in 

this manner. We do this in the cases G = SU(3) and SU(4) as examples. 

Moreover a mathematical property of the embeddings is used to discuss 

the interaction of instantons. 

This paper is organized as follows. In Section II, we recall the 

pseudo particle solution of Belavin et al. for G = SU(2), q = 1, and 

their extension to G = SU(N) > SU(2), q> 1 by Wilczek. Section III 

deals with the mathematical apparatus needed for our classification. 

This classification of the instanton solutions is achieved in Section IV. 

Finally Section V is devoted to a discussion of some simple physical 

properties (interaction) of these solutions. 
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II. PSEUDO PARTICLE SOLUTIONS 

We consider the gauge group SU(2) in the four dimensional 

Euclidean space, and define the gauge fields by: 

F1 = aII,:- OVA:+i e,, AIA 
PV 

k i= 1,2,3 and p, Y= 1,2,3,4. 
qk CI ” 

If we use matrix notation and write 

0. 
AII=A1 ‘, 

P 2 

ci being the usual Pauli matrices, then: 

0. 

F 

and the effective interaction is: 

S=lT 
4g2 

r FpV d4x. 
P” 

(II. 2) 

(II. 3) 

(II. 4) 

It has been shown recently by Belavin et al. 1 
that there exist 

nontrivial solutions to the classical equations of motion, characterized 

by a topological quantum number, known as the Pontryagin index, and 

given by: 

q=+ Tr 
/ 

F I?‘” d4x. 
8rr I1v 

where F = ; E FpO is the dual of F 
PV tL”PO PV’ 

This index q may be 

(II. 5) 

shown to take always integer values. 
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then : 

An important inequality holds for the effective action. For since: 

P” 
- FJ2 d4x 2 0 , 

s> ZL 2 191 . 
g2 

(II. 7) 

It is clear that if there exists a field such that for qf 0: F :Jy 
CLV WV’ 

then the inequality is saturated and this F is a non-trivial solution to 
CL” 

the classical field equations. 

Belavin et al. construct such a solution for q= 1. This is given by: 

2 
Ap= x 

-1 

x2 +x2 
82 (II. 8) 

where A is an arbitrary parameter, or using the Jackiw-Rebbi gauge 

transformation5 

AP= - 
A2 

x2 +A2 
(apa g-l I (II. 9) 

If we write this solution in the form A 
P 

= AL(x)+ leading to the 

field strength: F 
P” 

= FLY (x) ;, then if Ti, i = 1.2,3 form any 

representation of SU(2): [Ti,Tj] = 2. E.. T ,the potential A =A~(x) $ 1 qk k P 

will give the field strength: FL” (OX) 2, which is self dual and hence 

saturates the inequality for some q. Thus, if the gauge group is G, all 

such instanton solutions in G may be obtained in this manner by embedd- 

ing SU(2) into G in all inequivalent ways. 3,2 All such solutions are thus 

characterized by all inequivalent embeddings of SU(2) in G. 
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III. EMBEDDING OF THE SU(2) ALGEBRA 
IN A (SEMI) SIMPLE ALGEBRA G 

The mathematical problem of embedding a simple subalgebra 

6 in a simple algebra G has been discussed by Dynkin. 
4 

Consider a semisimple complex algebra G and K its Cartan 

subalgebra. Let 6 be a subalgebra of G, with K its Cartan subalgebra. 

An embedding of ‘.? into G is completely defined by a mapping from I? 

into K 
n 

f (Hi) = x fik Hk i = I,-----,1 , 

k=l 

with Hi and Hi the elements of K and K respectively, where 1 is 

the rank of 6 and n the rank of G. 

The relation: 

(f(Z), f(Y)) = j, (?,Y) X, ?.e 6 , 

in which (k;;,?) = Tr ad%* ad!? is the killing form relative to 2 and?, 

determines a scalar factor j, independent of ?:, %‘, and is called the 

index of the embedding. 

The set of numbers fik form the matrix of the embedding. The 

embedding of the shift operators fig of the subalgebra G in G is 

given as: 

f (Q = 
(YE I?- 

C- EC> aa 
(Y 

(1II.l) 

(III.2) 

(111.3) 
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with the Czti complex numbers determined through fik by the embedding 

of the roots Z into the subset F- LY of the root system F of the algebra 

G, defined by: 
* 

I-- = Ly (III.4) 

the map f being defined through the relation: 

(H, f(g)) = (f*(H), ?I) > (III. 5) 

for any two elements H and f(G) in K. The index j, in the embedding f 

may also be defined by: 

(III. 6) 

as long as G and i?l are different from C 6 
n’ The index j, is a non- 

negative integer. Embeddings of the same algebra c in an algebra G 

which are related through an inner automorphism of G are equivalent 

embeddings and the subalgebras of G which correspond to these 

embeddings are conjugate subalgebras of G. (Two algebras are called 

conjugate if they are related by an inner automorphism. ) Two equivalent 

embeddings have the same matrix (fik) and hence the same index j,. 

In most cases the indices j, corresponding to inequivalent 

embeddings are different and hence may be used to label the embeddings. 

However, the indices of inequivalent embeddings may coincide,in which 

case one must refer to the defining matrix (fik). 
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If G is isomorphic to SU(2) then the matrix (fik) bedomes a 

vector (fk) k= 1.. . . n called the defining vector of the embedding. 

The index is in this case given by: 
n 

1 
2 

fk ’ 
k=i 

which is half the square of the length of the defining vector, in any 

m-dimensional Euclidean space with m >n. 

It is well known that one can choose among the set of (positive) 

roots of an algebra G a subset of n roots LY (1) (n) . . . . u such that any 

root is a linear combination of (Y(~) with either all non-negative or all 

non-positive integers. This subset of n roots is called a system of 

simple roots for G. It holds that: 

(III. 7) 

and 

) 
= 2 r = 0,1,2,3 i# j , 

(u(i) , .2(j)) 5 0. 

(III. 8) 

The longest root is normalized through the usual scalar product 

b, u) = 2, (III.9) 

except for C 
6 

n’ 

A root system F of a simple Lie algebra G contains at most 

roots of two different lengths. 

A graphical representation of the system of simple roots is given 

by a Dynkin diagram4 : Every simple root is represented by a circle 



-9- FEBMILAB-Pub-76/85-THY 

with a number of lines joining two circles equal to r, as defined in 

Eq. (11.8). When roots of different lengths exist, shorter roots are 

represented by filled in circles. The simple roots of SIJ(N) = AN-* 

are given for example as: 

-(i) (Y = Gi - Gj (i, j = f,Z,...N; ifj) 

where si for a set of orthonormal unit vectors in the N-dimensional 

Euclidean space. The corresponding Dynkin diagram is shown in 

Fig. ia 

. - 
el-e2 

e^ - 2-e3 
6 4 

3 4 eNsi- GN 

Fig. la 

Dynkin Diagram for SU(N). 

Fig. Ib shows the Dynkin Diagram for the exceptional algebra 

G2 as another example. 

B 

;(I) = g -6 
2 3 

p ; f (6 -2; 
1 2 

+s3j. 

Fig. Ib 

Dynkin Diagram for G2. 
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If we label the circles of z(i) in the Dynkin diagram of G by the 

+ -(i) 
numbers (f , 0 ), where 7 is the defining vector of an embedding of 

SU(2) in G, we obtain the Dynkin characteristic of this embedding. 

The following two theorems, due to Dynkin, will be very useful 

for our discussion. 

Theorem D. L7 

A necessary and sufficient condition that two three dimen- 

sional subalgebras of the semi-simple algebra G should be 

transformable into each other by an automorphism of G is 

that their characteristics coincide. 

In the case of simple algebras G the word “automorphism” above may 

be replaced by “inner-automorphism”. 

It can be shown furthermore that every number which is written 

into the characteristic diagram is 0, i, or 2. 

Theorem D. II. 8 

Let fi,f2,. . . f3 be embeddings of a simple algebra 

G into the simple algebra G and let 

[ 
fi (x) , fj(u, =o 

I 
(i#j;X,YeS), 

then f=fj+f2+... f3 is likewise an embedding and 

j, = j, + j, + . , . + j, . 
1 2 3 

(111.~0) 
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Theorem D. I. is useful in classifying pseudo particle solutions 

and Theorem D. II indicates cases when two solutions may be added to 

form a third. 

Now, let the matrices Ti , i = 1,2,3 with 

[Ti, Tj] = 2ieijk Tk, 

represent the embedding f of SU(2) in G. This embedding is charac- 
n 

terized by the defining vector (fk) such that T3 = c k=l fk Hk’ 
and its 

index is j, = 2 k=Zfk. 
15 2 

This is half the square of the “length of the 

vector” T 3 in any Euclidean space where Hk form a set of unit 

orthonormal vectors. 

If G = SU(N), then it is convenient to consider the root space in 

a hyperplane of the N dimensional Euclidean space. The Hk are 

(N-1)NxN diagonal matrices which can be written as a sum over the 

N-dimensional orthonormal basis: 

(IY.11) 

E1 = 

( 
I 

0 
\ 0 

0 ‘. 

‘0 

)E2=(*~‘t,yo )ENz 
In this basis T3 is represented by: 

0 
\ 

\ 0 !(. 1 (lII.12) 

0 ‘\* 
I 

N 

T3 = c f’ Ek . 
k=l k 

(111.13) 
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It is clear from Eq. (III.12) that fk are simply the diagonal elements of 

T3. 
If we denote these elements9 by: mJ = 25, Z(J-i), . . . , -2J; 

mJ’ 
= 2J’,. . . , 35’. . . where (ZJ + 1) + (2J’ + 1) + . . = N, then the index 

of the embedding becomes: 

or: 

j, = + C m: , 
J,J’,... 

1 
j, = 5 TrT; . 

14) 

,15) (III. 

Note that Eq. (III.15 ) may be directly obtained from Eqs. (III.1 & 2), 

taking proper care of normalization factors. 

It is obvious to generalize this property for any semi-simple 

algebra. Note that if the gauge group is of the form G (1) XC@’ X... XGtk) 

with GC1), G(2), . , . G(k) simple, then the corresponding defining 

vectors are sets of k vectors f (1) (W , . . . f , with f(i’ characterizing 

(i) the embedding of SU(2) in G . In this case the index is the sum of 

the indices jf(i). 
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IV. CLASSIFICATION OF PSEUDO-PARTICLE SOLUTIONS 

Let Fi 
WV 

Ti represent solutions obtained by embedding SU(Z) into 

G. The Pontryagin index is given by: 

q= 1 
alr2 Tr s 

F FpVd4xzL 
P” 8rr 

2 Tr (T3)2/ Fi 
PV 

FrY d4x 

(IV.1) 

= 
J 

Fi F?” d4x . 
JLV 1 

where j, is the index of the embedding. 

For the solution (111.8) of Belavin et al., q = j, = 1. In other 

1 words the integral - Fi F?” d4x = 1. A new set of solutions IO 

& PJ 1 
where this integral takes all integral values has been obtained 

by Witten. i.e. q=jf*w where j f = 1. w any integer. 

For any embedding of SU(2) in G, we get a generalization of 

the Belavin et al., solutions with: 

s=j; w, (IV.2) 

where j 
f 

is the index of the embedding. 

It must be clear from our discussion of Section III that the index 

jf is not enough to classify the embedding, and hence the solutions. 

One must refer to the Dynkin characteristic of the embeddings. In the 

following, we discuss the solutions for G = SU(N) N = 3.4,. . . 8 
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and for E ,, one of the exceptional groups, which are also of physical 

interest. 

Let us mention at this point that the classification of the embeddings 

of SU(2) into simple algebras of rank s6 are given in Ref. (11). and 

into the exceptional algebras in Ref. (4). 

Case G = SU(N): 

The inequivalent embeddings of SU(2) into SU(N). N= 3,4,5,6,7,8 

are given in Table I. 

In Table II we show the characteristics for the cases SU(3) and 

SU(4). Let us recall that the Dynkin characteristic is simply a graphical 

description of the defining vector. The second column shows the min- 

imal including regular subalgebra. One calls G’ a regular subalgebra 

of G if the set F lY’ contains one and only one root a of G for every 

root cy’ E 1’ in G’ (see Eqs. III.4 & 5). The knowledge of these sub- 

algebras will be useful in the discussion of Section V to visualize the 

positions of the different SU(2) in the matrix adjoint representation 

of G. 

We notice that when N is odd, the yth coordinate of the 

defining vector is 0, and the other coordinates are symmetric with 

respect to it. When N is even, the coordinates are symmetric with 

Nth 
respect to the F’ comma. 

Every embedding specifies the transformation properties of the 

pseudo-particle solution under G. For example, in the case of SU(3), 
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the solutions with j, = 1 and 4 transform like X3; in the case of SU(4) 

they transform like: h5 - -& A8 + 
J- 

z 3 Al5 for j, = 2, and 

X3 + d-3 X8 + vT Ai5 for jf = 10. 

Note that in the case of SU(8), one obtains two solutions with the 

same index but different defining vector. The degeneracy of j f, already 

seen by Wilczek’, emphasizes the need of the full defining vector (or 

characteristic) to classify solutions. 

Case G = E(7): 

As another particular case of different characteristics correspond- 

ing to the same index, we mention in Table III few of the embeddings of 

SU(2) into E(7). A complete list is given in Ref. (4). 

For all other simple groups By, CV, D,, and G2, F4, E 
6’ E8’ complete 

~; 
listings of all SU(2) embeddings are given in Ref. 4 and 11. 
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Minimal Including 
Algebra Regular Subalgebra 

SU(3) A1 

A2 

Index j, Defining Vector 

1 (IsO,-1) 

4 e,o,-2) 

1 

2 

4 

10 

(1,0,0,-l) 

(1,1,-1,-l) 

(LO,O,-2) 

(3,1,-1,-3) 

1 

2 

4 

5 

10 

20 

(l,O,O,O,-1) 

(l,f,O,-1,-l) 

(2,0,0,0,-2) 

(2,1,0,-I,-2) 

(3,1,0,-i,-3) 

(4,2,0,-2,-4) 

1 

2 

3 

4 

5 

8 

10 

(~,O,O,O,O,-1) 

(1,1,0.0,-1,-l) 

(l,l,l,-1,-1,-l) 

(~,O,O,O,O,-2) 

(2,~,0,0,-1,-Z) 

(2,2,0,0,-2,-Z) 

(3,1,0,0,-I,-3) 
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Table I: Embeddings of SU(2) into SU(N) 3 _C N 5 8. (Cont. ) 

Minimal Including 
Algebra Regular Subalgebra 

SU(6) 
(Cont. ) 

A3 + A 1 

A4 

A5 

SU(7) *I 

2A1 

3A1 

A2 

A2 + A1 

A2 f ZA 1 

2A2 

A3 

A3 + A1 

A3 +A 2 

A4 

A4 +A1 

A5 

A6 

Index j, Defining Vector 

11 (3,1,1,-1,-1,-3) 

20 (4,2,0,0,-2,-4) 

35 (5,3,1,-l,-3,-5) 

1 

2 

3 

4 

5 

6 

8 

10 

iI 

14 

20 

21 

35 

56 

(1,0,0,0,0,0,-1) 

(1,1,0,0,0,-1,-l) 

(i,l,l,O,-1,-1,-l) 

(2,0,0,0,0,0,-2) 

(2,1,0,0,0,-1,-Z) 

(Z,l,l,O,-1,-1,-Z) 

(2,2.0,0,0,-2,-2) 

(3,1,0,0,0,-I,-3) 

(3,1,1,0,-I,-l,-3) 

(3,2,1,0,-l,-2,-3) 

(4,2,0.0,0.-2,-4) 

(4,2,1,0,-l,-2,-4) 

(5,3,1,0,-l,-3,-5) 

(6,4,2,0,-2,-4,-6) 

(1,0,0,0,0,0,0,-1) 

(1,~,0,0.0,0,-~,-1) 

(1,1,1,0,0,-1,-1,-l) 
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Table I: Embeddings of SU(2) into SE(N) 3 (_ N 5 8. (Cont. ) 

Minimal Including 
Algebra Regular Subalgebra Index j, Defining Vector 

SU(6) 
(Cont. ) 4A1 4’ (1,1,1,1,-1,-1,-1,-l) 

A2 
4” (2,O,O,O,O,O,O,-2) 

A2 + A1 5 (2,~,0,0,0,0,-1,-Z) 

A2 + 2Al 6 (2,1,1,0,0,-1,-1,-Z) 

2A2 8 (2,2,0,0,0,0,-2,-Z) 

2A2 + A 1 9 (2, 2, 1, o,o,-1,-2,-Z) 

A3 10 (3,~,0,0,0,0,-I,-3) 

A3 + A1 I.1 (3,1;1,0,0,-l,-l,-3) 

A3 + 2Al 12 (3,1,1,1,-l,-l,-1,-3) 

A3 + A2 14 (3,2,1,0,0,-l,-2,-3) 

2A3 20’ (3,3,1,1,-i,-l,-3,-3) 

A4 20” (4,2,0,0,0,0,-2,-4) 

A4 + A* 21 (4,2,1,0,0,-l,-2,-4) 

A3 +A2 24 (4,2,2,0,0,-2,-2,-4) 

A5 35 (5,3,1,0,0,-l,-3,-5) 

A5 + Al 36 (5,3,1,1,-l,-l,-3,-5) 

A6 56 (6,4,2,0,0,-2,-4,-6) 

A7 86 (7,5,3,1,-l,-3,-5,-7) 
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Table II: Dynkin Characteristics for SU(2) C SU(3) and SU(4). 

Algebra Index Dynkin Characteristic 

SU(3) SU(2) case: 1 A-----& 

SO(3) case: 4 2 

SU(4) 1 - 

2 u 

4 u 

10 - 
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Table III: Embeddings of SU(2) into E(7) for jf 5 5. 

Index 

I 

2 

3' 

3" 

4' 

4" 

5 

Minimal Including 
Regular Subalgebra 

A1 

2A1 

[ 3Ail' 

[ 3A11" 

[4A1]‘;A2 

[ 4A11" 

5A1;A2 + A, 

Characteristic 

6 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 
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V. SUMS OF PSEUDOPARTICLE SOLUTIONS 

We consider now the problem of adding two 

or more solutions to get a third. It is clear that when two or more 

solutions are simply added, the sum does not form in general a 

solution, except finally when their positions coincide. This later 

possibility arises when the sum of two --or more-- embeddings of 

SU(2) in G is itself an embedding. 

Consider the sum of solutions 

Ap = A; (x - ta)(a) Ti + Aip (x - tb)(b) Ti + . . . . 

From the general form of the action, one clearly sees that: 

(h(,)l+ h(b)] +-) ’ 

If A 
P 

were a solution the equality sign holds. When we let all 

t 
(a)’ t(b)’ *‘. go to zero, the form Ap becomes a solution only if 

the sum 

(a)Ti + (b) Ti+ . . . = Ti 

with [ Ti, Tj] = 2 ie. 
vk 

Tk. This clearly would be the case if the sum 

of the embeddings (a), (b). . 

Then the action becomes: 

s = g ( 14(,) 
2 

is itself an embedding of SU(2) in G. 

+b+b)I+‘**) * 
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Using Theorem D.2 of Section III, we can see that this would 

happen in the following cases. 

1) SU(4): 

The embedding with jf= 2 may be obtained from the sum of two 

embeddings of j, = 1. This is because one can add two equivalent em- 

beddingsoftheform (z i)and (i t), withT being 2~2 mays 

corresponding to j, = i, to form the inequivalent embedding 
T 0 o T 

with j, q 2 in W(4). 

ii) SU(5): 

For the same reason as in the case of SU(4) above, j, = 2 solutions 

may be obtained from the sum of two j, = 1 solutions. 

Moreover, the jf = 5 solution can be obtained as the sum of 

the jf =iandjf = 4 solutions. This is because for the jf = 5 

solutions the corresponding matrices are of the form: with 

T 2 X 2 matrices and T’ 3 X 3 matrices, whereas for j, = 4, these are 

of the form: and for j f 
= 1 of the form 
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iii) SU(6): 

In this case, just as in SU(5), the jf= 2 may be obtained as the 

sum of two j f=l and jf= 5 as the sum of jf=4 and jf= 1. Moreover, 

the jf= 3 solution may be considered as the sum of three jf= 1 solutions, 

or of one j, = 1 and one j, = 2 solutions, for now the matrices for j, = 3 

are of the form 
c > 

*TT . Similarly the j, = 8 may be the sum of two 

jf=4, and jf=ll the sum of jf=iO and jf=i. 

iv) SU(7): 

The list grows and in addition to the case of SU(6) we have: 

j,=6 the sumof jf-4 and j,=2, or jf=5 and jf=i, or j,=4 and jf=t 

and j, = 1; j, = 14 the sum of j 
f 

=I0 and jf=4; and j,= 21 the sum of 

jf=20 and jf=l. 

v) SU(8): 

In SU(E), the list goes further. However, we note that j, = 4’ 

(following notation of Table I) may be obtained as the sum of fourjf= 1, 

or two j, = 2, or j, = 1 and j, = 3, or two j, = 1 and one jf = 2, while for 

the inequivalent embedding jf=4” Theorem D.2 does not apply. 

Nevertheless, as shown by Wilczek 2 in SU(3) and hence in all SU(N), 

N> 3, one can consider jf=4” as the sum of four jf= 1. 

A similar discussion can be done in the case of all other semi- 

simple groups, see for example Table III for the case of E(7). 
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Another set of cases where solutions can be seen as the sum of 

two or more, may be obtained using the sum constructed by Wilczek in 

the case of SU(3). For example one can see that the j, = 8 solution in 

SU(6) can be obtained as the sum of 4 j, = 2 solutions. We notice how- 

ever that the defining vectors corresponding to j, = 1 and j, = 4 are 

parallel, so are the defining vectors for j, = 2 and j, = 8 in SU(6). We 

conjecture that in any semi-simple algebra G, when two embeddings 

f and f’ are such that their defining vectors are parallel, i..e. f’ = af. 

Q> 1, then it is possible to sum cz 
2 

embeddings f and obtain an em- 

bedding ft. 

We remark here that the solutions 10 
m SU(2) with 9>1 appear to be a sum 

of separated solutions of j, = 1 which is itself a solution because of the 

special field configuration it has in space. The individual instantons 

in this case are in a sense free as there is no interaction energy. These 

solutions however are of the general form A;(x)? and hence 

similar solutions may be obtained in G by replacing ai by Ti, the 

various embeddings of SU(2) in G, and the interaction energy would 

still be zero. 
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